ON THE DECOMPOSITION OF FeSO4 IN THE PRESENCE OF FeS2 AND BaO2

Y. Pelovski, V. Petkova, I. Dombalov and I. Gruncharov

HIGHER INSTITUTE OF CHEMICAL TECHNOLOGY, "KLIMENT OCHRIDSKI" BLD. NO. 8, SOFIA, BULGARIA

FeSO4 is a waste obtained in the production of TiO_2 and also in steel etching in block metallurgy. The thermochemical decomposition of different FeSO4 - FeS₂ - BaO₂ mixtures was studied by means of a derivatograph, X-ray diffraction, Mössbauer spectroscopy, EMF and other methods in order to understand the chemical transformations, new solid phases and kinetic limitations in the temperature range 292 - 1292 K. It was shown that there is a multistep process in which BaSO4, FeS, BaFeO3 and BaFe₂O4 can be formed as intermediates. Depending on the initial ratio of the components, the atmosphere and the temperature range, different phase compositions of the final solid product can be obtained. At the present stage of the investigations, the possibility of obtaining pure barium ferrite as a product is not confirmed.

Fe(II)sulphate is a factory waste obtained in the production of TiO₂ by the sulphate method and also in steel etching in black metallurgy [1, 2]. Thermochemical decomposition is one way to utilize it in the production of iron oxides and sulpur-containing gases. Irrespective of the organization of the process, the gas obtained should have an appropriate concentration for the preparation of sulphuric acid. The content of sulphur oxides in the output gases could be increased with pyrite in the mixture. The autothermality of the process of decomposition of dry sulphate in the combustion of flotation pyrite is attained at $S_{sulphate}$: $S_{sulphide}$ 1:1.7-2 [2]. The use of barium peroxide in the system decreases the need for oxygen and leads to a lower expenditure of a gaseous reagent. It appears to be no literature reports on the processes that occur when the FeSO₄ - FeS₂ - BaO₂ system is heated.

The aim of the present work was to investigate the mechanism of thermochemical decomposition of a FeSO₄ - FeS₂ - BaO₂ mixture in a molar ratio of 4:8:1 in an oxidizing atmosphere at 1273 K.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Experimental

Method

The investigations were carried out in a dynamic regime, at a heating rate of 5 deg/min, in the temperature range 293-1273 K, with Q-1500D derivatograph (MOM, Hungary). The sample weight was 1000 mg, and the rate of air delivery was 25 l/h. Zirconium melting-pots with an internal diameter of 8 mm and a height of 20 mm were used. The investigations were carried out with a pyrite concentrate containing 41.87 % S, 37.63 % Fe and 10.58 % SiO₂. The iron(II)sulphate and barium peroxide were chemically pure substances. BaO₂ was produced by "REACHIM", USSR; the content of the basic substance was 97.05 %. FeSO4.7H₂O was transformed into FeSO4.H₂O by preliminary drying at 353 K and 0.6 MPa. The contents of SO4²⁻ and Fe²⁺ in the monohydrate were 58.93 % and 34.47 %. The intermediates and the final solid products obtained from the thermochemical decomposition were analysed by powder diffractometry and Mössbauer spectroscopy.

Results and discussion

Thermochemical decomposition of FeSO4 and its mixtures with BaO2

The thermochemical decomposition of pure FeSO₄ is characterized by several basic stages (Fig. 1). The initial weight loss of 2 % up to 433 K is due to moisture adsorbed from the air. The sample mass decreases by 6.7 % in the temperature range 478-595 K and coincides with loss of the molecule of water from the monohydrate. The height of the zirconium melting-pots and the comparatively large quantity of sample hamper the complete dehydration process and lead to weight losses smaller than the theoretical one. We assume that the process continues at higher temperatures and terminates with the beginning of thermochemical decomposition of dry FeSO4. Some change was recorded in the TG run in the temperature interval 763-805 K. The atmospheric oxidation of Fe^{2+} to Fe^{3+} and the formation of FeOHSO4 and/or Fe₂O(SO₄)₂, etc. is possible in this temperature range [3]. By means of X-ray phase analysis, we have proved only the formation of FeOHSO4 in the products of dehydration of FeSO₄ (Fig. 2). The change in the TG run supported the assumption of immediate dehydration and oxidation. It was difficult to explain the presence of metastable iron compounds due to the

Fig. 1 TG, DTG and DTA curves of the thermal decomposition of FeSO₄·H₂O at T = 1273 K

Fig. 2 X-ray of a product from the thermal decomposition of FeSO4 H2O at 595 K

strong influence of temperature and the partial pressure of oxygen on the preparation. Due to the height of the sample and the difficulty of access of oxygen atoms to the interior of the sample, these compounds are probably formed in very small quantities and could not be detected by X-ray phase analysis. The process of desulphurization of FeSO4 begins at 833 K and the DTA curve shows a deep endothermal effect.

The process terminates at 1083 K and Fe₂O₃ is obtained in the solid product. The TG sample weight loss of 45 % confirms the formation of hematite.

Fig. 3 TG, DTG and DTA curves of the thermal decomposition of a mixture of FeSO₄ and BaO₂ in molal ratio of 4:1 at T = 1273 K

The introduction of BaO₂ into the system changes the mechanism and the kinetics of the process significantly. Figure 3 presents a derivatogram of the thermochemical decomposition of a FeSO₄-BaO₂ mixture in a molar ratio of 4:1. Two consecutive processes were indicated by the TG dependence in the temperature interval 553-659 K. The first of these is connected with the loss of water from the FeSO₄·H₂O, as indicated by the weight loss of 4 % and the endo effect in the DTA curve. Evidently, the thermal dissociation of BaO₂ begins in the given temperature range. The atomic oxygen formed is very reactive and attacks the FeSO₄ in the system. This leads to an exchange reaction between the components at 613 K and the formation of Fe₂O₃ and BaSO₄ accompanied by the evolution of heat. The process can be illustrated by the following equation:

$$FeSO_4 + BaO_2 \rightarrow BaSO_4 + 0.5 Fe_2O_3 + 0.25 O_2$$
 (1)

A slight process of intermediate oxidation and decomposition in the temperature range 759-779 K, characteristic of the pure sulphate, was also observed. The main process of desulphurization of the excess of FeSO₄, takes place after the exchange reaction between FeSO₄ and BaO₂. It occurs in the temperature interval 883-1063 K and results in a weight loss of 28.3%. It can be seen that the introduction of BaO₂ and the formation of BaSO₄ leads to a shift in the initial temperature of decomposition of FeSO₄ to higher values and to a decrease in the total mass loss of 54.6% : 37.3% for pure FeSO₄; 45% for the mixture of FeSO₄ and BaO₂, as well as weight losses owing only to desulphurization of FeSO₄; 28.3% for pure FeSO₄ obtained from the thermochemical decomposition of the mixture. The presence of BaSO₄ and Fe₂O₃ (Fig. 4) in the final products of decomposition was established by means of X-ray phase analysis.

Fig. 4 X-ray of a product from the thermal decomposition of a mixture of FeSO4 and BaO2 in molal ratio of 4:1 at T=1273 K

Thermochemical decomposition of FeS2 and its mixtures with BaO2

Fig. 5 TG, DTG and DTA curves of the thermal decomposition of FeS₂ at T = 1273 K

The derivatogram of the thermochemical decomposition of FeS₂ is shown in Fig. 5. The literature data for the thermochemical decomposition of FeS₂ [4] are very contradictory as concerns the mechanism of oxidation and depend on the type of the investigated pyrite concentrate and the experimental conditions. Analysis of the TG, DTA and DTG dependences leads to some conclusions about the processes of dissociation and oxidation of FeS₂ under a dynamic heating regime. The first stage of decomposition of FeS₂ occurs in the temperature range 637-901 K. On the basis of the weight loss of 19.2 %, this stage is probably connected with the dissociation of FeS₂, as represented by the following equations:

FeS2
$$\rightarrow$$
 FeS + S $T = 637 - 781$ K(2)FeS2 + 1.5 O2 \rightarrow FeS + SO3 $T = 781 - 829$ K(3)FeS2 + O2 \rightarrow FeS + SO2 $T = 829 - 901$ K(4)

The combustion of elementary sulphur and the formation of sulphur oxides lead to alterations in the kinetics of decomposition of FeS₂, registered with a step character in the TG plot. The possible formation of nonstoichiometric sulphides of the type $Fe_{1-x}S$ should be mentioned. At above 961 K, the oxidizing process proceeds at constant rate and pyrotine is converted into hematite:

$$2 \text{ FeS} + 3.5 \text{ O}_2 \rightarrow \text{Fe}_2 \text{O}_3 + 2 \text{ SO}_2 \tag{5}$$

The characteristic feature of the process of thermochemical decomposition of pyrotine is its inability to take place completely at 1273 K. The experimental weight loss of 25.8 % is lower than the theoretical one, and shows the influence of the rate of transport of the gaseous reagents. Analysis of the intermediates and final products of the decomposition of pure FeS₂ does not prove the formation of iron sulphates.

Fig. 6 TG, DTG and DTA curves of the thermal decomposition of a mixture of FeS₂ and BaO₂ in molal ratio of 8:1 at T=1273 K

The introduction of BaO₂ into the system leads to changes in the mechanism and the temperature intervals of transformation. Figure 6 shows the derivatogram of the thermochemical decomposition of a mixture of FeS₂ and BaO₂ in the molar ratio 8:1. The process is a multistep one. The first stage occurs in the temperature range 609-759 K, and involves some possible

parallel reactions. The increase of the temperature and the catalytic influence of FeS₂ destabilize the structure of BaO₂. The separating atomic oxygen attacks the FeS₂ molecule and predetermines the beginning of dissociation of elementary sulphur from its structure. The reactions that occur increase the reactivity of the components in the system and lead to the exchange reaction. This complicated mechanism of the process up to 759 K is confirmed by the slight increase in the sample mass at 681 K. The thermochemical decomposition of the double mixtures of FeSO₄ - BaO₂ and FeS₂ - BaO₂ indicates an exchange reaction at the higher temperature of 633 K. The exchange process is accompanied by a strong exothermal effect on DTA. This stage is well described by the following reaction:

$$0.75 O_2 + FeS_2 + BaO_2 \rightarrow 0.5 FeS + 0.5 BaFeO_3 + 0.5 BaSO_4 + S$$
 (6)

Thermodynamic calculations confirm the possible formation of some barium ferrites, such as BaFeO₃ and BaFe₂O₄. The thermodynamic formation of BaFe₂O₄ is most probable. Under these conditions, however, the available oxygen in the system is not enough for the formation of BaFe₂O₄. The increase of the temperature from 759 to 939 K is accompanied by a continuous dissociation of FeS₂ according to reactions (2) - (4). The X-ray phase analysis data (Fig.7) show that the solid product obtained from the thermochemical decomposition of FeS₂ - BaO₂ in this temperature range contains FeS₂, FeS, BaFeO₃ and BaSO₄. The recorded weight loss of 11.4% also confirms the assumption of the existence of such a mechanism of the

Fig. 7 X-ray of a product from the thermal decomposition of a mixture of FeS₂ and BaO₂ in molal ratio of 8:1 at T=983 K

process. The TG changes are negligible in the temperature range 939-1163 K. A weight loss of 2.8 % is registered, which is explained by the slow oxidation of pyrotine to hematite in the system.

The oxidation in the temperature range 1165-1263 K is more intensive and the rate of the process is higher. The mass loss is 6.4%. The total weight loss is lower than that from the thermochemical decomposition of pure FeS2 due to the formation of BaSO₄ in the system. X-ray phase analysis and Mössbauer spectroscopy of the final product of the decomposition of FeS₂ -BaO₂ (Figs 8 and 9) indicate that BaSO₄, Fe₂O₃ and about 20% of BaFe₂O₄ were obtained. The Mössbauer spectrum of a sample after the thermal treatment of FeS₂ - BaO₂ in a molar ratio of 8:1 at 1263 K exhibits a combination of two sextets (Fig. 9). One of them is characteristic of the α -Fe₂O₃ spectrum, while the other one, with slight lines, is due to BaFe₂O₄. In order to explain the mechanism and the temperature intervals of the phase transitions of the barium ferrites, the solid products of the decomposition of FeS₂ - BaO₂ in a molar ratio of 8:2 at a temperature not higher than 1211 K or 1263 K were investigated by means of Mössbauer spectroscopy. The spectrum of the solid product obtained up to 1211 K (Fig. 10) reveals the spectrum of α -Fe₂O₃ and vague spectra of non-stoichiometric iron sulphides and barium ferrites: BaFeO3 and BaFe2O4. Figure 10 shows the presence of iron sulphides with a narrow sextet, the intensity of which indicates that the quantity in the sample is about 8-10 %. Barium metaferrite has a perovskite structure. Compounds of this type give a Mössbauer spectrum consisting of

Fig. 8 X-ray of a product from the thermal decomposition of a mixture of FeS₂ and BaO₂ in molal ratio of 8:1 at T = 1273 K

a single line with an isomer shift near to zero. Nevertheless, some widening of the α -Fe₂O₃ lines is seen, which proves the presence of BaFe₂O₄. The main quantity of ferrite is in the form of BaFeO₃. The spectrum of the solid product from the decomposition of FeS₂ - BaO₂ in a molar ratio of 8:2 at 1263 K again reveals a combination of several sextets (Fig. 11). The lines of

Fig. 9 Mössbauer spectrum of a product from the thermal decomposition of a mixture of FeS2 and BaO2 in molal ratio of 8:1 at T=1273 K

Fig. 10 Mössbauer spectrum of a product from the thermal decomposition of a mixture of FeS₂ and BaO₂ in molal ratio of 8:2 at T=1211 K

the α -Fe₂O₃ spectrum are well expressed. Comparison with the spectrum in Fig. 9 shows the presence of 15-20 % of BaFe₂O₄ and about 5 % of BaFeO₃ in the sample.

The results of Mössbauer spectroscopy allow conclusions on the mechanism of the processes in the system FeS₂ - BaO₂ in the temperature ranges 939-1163 K and 1163-1263 K.

Besides the oxidation of pyrotine to hematite in the temperature range 939-1163 K, the transformation of BaFeO₃ to BaFe₂O₄ begins. The ratio BaFeO₃:BaFe₂O₄ is 4:1. Together with the intensive oxidation of iron sul-

Fig. 11 Mössbauer spectrum of a product from the thermal decomposition of a mixture of FeS₂ and BaO₂ in molal ratio of 8:2 at T = 1273 K

phide, the phase transition of BaFeO3 into BaFe2O4 increases. Both processes terminate at about 1253 K. The ratio of BaFeO3 and BaFe2O4 in the solid phase is approximately 1:4.

Thermochemical decomposition of FeSO4 in the presence of pyrite concentrate

Figure 12 shows a derivatogram of the thermochemical decomposition of a mixture of FeSO4 and FeS₂ in a molar ratio of 4:8. In the temperature range 523-659 K, the system loses only crystal water from the monohydrate, with a weight loss of about 2.5 %. A significant weight loss of 23 %, which exceeds the theoretical possibility for complete dissociation of FeS₂ to pyrotine, is registered in the temperature range 683-803 K. The TG run is characteristic of a self-increasing process. Evidently, the intensive separation of elementary sulphur and sulphur oxides as a result of pyrotine formation and of the partial decomposition of FeSO4 begins after 683 K:

$$0.5 O_2 + 2 FeSO_4 \xrightarrow{S,SO_3} Fe_2O_3 + 2 SO_3$$
 (7)

$$0.5 O_2 + 3 FeSO_4 \xrightarrow{S,SO_3} Fe_3O_4 + 3 SO_3$$
 (8)

The process of decomposition of FeSO₄ begins at 763 K, which is lower than the initial temperature (833 K) of dissociation of pure FeSO₄ (Fig. 1). Thus, the FeS₂ in the solid phase and the separated sulphur act as catalysts and decrease the temperature of decomposition of FeSO₄. Saffiullin [5] and Vassilev [2] obtained similar results. The accumulation of the products of reactions (2)-(4) and (7), and the presence of SO₂ and SO₃, lead to blockade of the thermochemical decomposition of FeSO₄. Increase of the temperature from 803 K to 853 K leads to dissociation of the residual undecomposed FeS₂ according to reactions (3) and (4). The weight loss of 4.5% corresponds to the dissociation of about 35% of the FeS₂ concentrate in the sample. The remaining 65% dissociates together with FeSO₄ in the previous stage. The processes of dissociation an oxidation of FeS₂ and pyrotine are accompanied by decomposition of the FeSO₄ excess. The process takes place in the temperature range 853-1011 K and coincides with the decomposition of pure FeSO₄ (Fig. 1). The registered 7.7% weight loss

Fig. 12 TG, DTG and DTA curves of the thermal decomposition of a mixture of FeSO₄ and FeS₂ in molal ratio of 4:8 at T = 1273 K

shows that 40 % of the FeSO₄ decomposes; the remaining 60 % is decomposed in parallel with FeSO₂ oxidation. The last stage occurs in the temperature range 1011-1233 K. This is characterized by oxidation of the accumulated FeS to Fe₂O₃. This is proved by the X-ray diagram of the final product of decomposition of the mixture (Fig. 13).

J. Thermal Anal., 36, 1990

The simultaneous decomposition of FeS₂ and FeSO₄ in a molar ratio of 4:8 shows the significant intensification of the process of oxidation and dis-

Fig. 13 X-ray of a product from the thermal decomposition of a mixture of FeSO₄ and FeS₂ in molal ratio of 4:8 at T = 1273 K

sociation of FeS₂ and FeSO₄. The formation of Fe_{1-x}S from pure FeS₂ occurs at 961 K (Fig. 5). The same process in mixtures with FeSO₄ takes place at a temperature not higher than 853 K. The destruction of the FeSO₄ structure in the presence of FeS₂ is a two-stage process which begins at the lower temperature of 763 K (Fig. 12).

Thermochemical decomposition of the system FeSO4 - FeS2 - BaO2

Figure 14 gives the derivatogram of the thermochemical decomposition of the system FeSO₄ - FeS₂ - BaO₂ in the molar ratio 4:8:1. The TG run is characterized by three consecutive stages corresponding to three endothermal effects. The largest mass loss of 17.4 % is that of the first stage, at 693-823 K. The second stage is from 823 K to 883 K, with an almost linear mass decrease of 3.5 %. The mass decreases by 6.1 % in the temperature interval 883-1007 K. The desulphurization of the undecomposed FeSO₄ to hematite is similar to that in the double system FeSO₄ - FeS₂. The TG run in the temperature range 693-983 K is very similar to the for the double system FeSO₄-FeS₂ which shows that the processes of desulphurization of FeS₂ and FeSO₄ determine the basic mechanism of the process. The mixture loses 1.9 % more mass at 1073-1243 K, but a well expressed endo effect is registered at 1223 K. The weight loss is most probably connected with the formation of thyoline. Analysis of the enthalpic-changes and weight losses suggests the following scheme for the chemical mechanism of the process:

FeSO₄*x*H₂O
$$533-593K$$
 FeSO₄*y*H₂O + (*x*-*y*) H₂O (8)

$$BaO_2 \xrightarrow{593-653K} BaO + 0.5 O_2$$
 (9)

2 FeSO_{4.y}H₂O + BaO₂
$$\xrightarrow{633-693K}$$
 BaSO₄ + 2y H₂O + Fe₂O₃ + SO₃ (10)

Fig. 14 TG, DTG and DTA curves of the thermal decomposition of a mixture of FeSO4, FeS2 and BaO2 in molal ratio of 4:8:1 at T=1273 K

$$FeSO_{4,y}H_{2}O + 0.5 O_{2} \xrightarrow{673-693K} FeOHSO_{4} + (y/2) H_{2}O$$
(11)

$$\operatorname{FeS}_{2} \xrightarrow{693-823\mathrm{K}} \operatorname{FeS} + \mathrm{S}$$
 (2)

$$FeS_2 + 1.5 O_2 \xrightarrow{823-873K} FeS + SO_3$$
 (3)

$$2 \text{ FeSO}_4 \xrightarrow{883-983\text{K}} \text{Fe}_2\text{O}_3 + 2 \text{ SO}_2 + 0.5 \text{ O}_2 \tag{12}$$

J. Thermal Anal., 36, 1990

The separation of oxygen in the temperature range 593-693 K is proved by measurement of the oxygen partial pressure in the system by the EMF method with a CaO - ZrO_2 sensor.

At the same time, other barium ferrite products registered in different systems confirm that the chemical mechanism includes other interactions as well.

No	System	<i>T,</i>	Ε,	K
	· · ·	K	kJ/mol	
I	FeSO4.xH2O			
1	$FeSO_{4.x}H_{2}O = FeSO_{4.y}H_{2}O + (x-y).H_{2}O$	545-645	71.4	0.990
2	$2FeSO_4 = Fe_2O_3 + 2SO_2 + 0.5O_2$	770-1090	136.9	0.997
II	FeS ₂			
1	$FeS_2 = FeS + S$	683-853	96.6	0.996
2	$FeS_2 + 1.5O_2 = FeS + SO_3$	853-993	123.0	0.999
III	$FeSO_4 + BaO_2 = 4:1$			
1	$2FeSO_4 = Fe_2O_3 + 2SO_2 + 0.5O_2$	1050-1100	130.8	0.989
IV	$FeS_2 + BaO_2 = 8:1$			
1	$2.5 \text{FeS}_2 + \text{BaO}_2 + 3\text{O}_2 = 0.5 \text{BaFeO}_3 + $	609-973	49.6	0.822
	+0.5BaSO4 + FeS2 + FeS + 1.5SO3			
2	$2FeS_2 + 3.5O_2 = Fe_2O_3 + 4SO_2$	1163-1263	155.3	0.996
v	$FeSO_4 + FeS_2 = 4:8$			
1	$FeSO_4 + FeS_2 + 3.75O_2 = 0.5Fe_2O_3 + FeS + + 2SO_3$	683-809	104.5	0.999
2	$FeS_2 + 1.5O_2 = FeS + SO_3$	809-853	118.34	0.991
3	$2FeSO_4 = Fe_2O_3 + 2SO_2 + 0.5O_2$	853-1011	125.3	0.998
VI	$FeSO_4 + FeS_2 + BaO_2 = 4:8:1$			
1	$2FeSO_4 + 2FeS_2 + BaO_2 + 1.25O_2 = FeS_2 + FeSO_4 + FeS + BaSO_4 + 0.5Fe_2O_3 + SO_3$	633-823	96.9	0.995
2	$FeS_2 + 1.5O_2 \approx FeS + SO_3$	823-883	100.2	0.998
3	$2FeSO_4 = Fe_2O_3 + 2SO_2 + 0.5O_2$	883-1007	126.1	0.998

Table 1 The values of activation energy (E) for different steps decomposition of mixtures from FeSO4-FeS2-BaO2 system

Table 1 gives the results of mathematical processing of the experimental data on the basis of the generalized equation of Reich [6] and the Arrhenius equation:

$$d\alpha/dt = A/B.e^{E/RT} (1-\alpha)^n$$
(13)

where: α is the degree of transformation

T is the temperature (K)

B is the rate of heating (deg/min)

1742

- A is the preexponential factor
- E is the activation energy (kJ/mol)
- R is the universal gas constant (kJ/mol)
- n is the order of reaction

The different activation energy values obtained illustrate the different rates of the dominating reactions in the given temperature ranges and demonstrate the possibly more effective reprocessing of waste FeSO₄.

Conclusion

Complex investigations on the decomposition of FeSO4 in mixtures containing pyrite concentrate and barium peroxide show that, depending on the molar ratio of the components in the output mixtures and the final temperature of the thermochemical decomposition, the preparation of solid products with different compositions and properties is possible. The possibility of obtaining a final product of barium ferrite at the present stage of the investigations is not confirmed.

References

 I. P. Narkevich and V.V. Pechkovskii, Utilization and Destroy of Wastes in Unorganic Technology, Moscow, "Chemistry" 1984.

- 2 B. T. Vassilev and M. I. Otvagina, Sulphuric Acid Technology, Moscow, "Chemistry" 1985.
- 3 M. S. R. Swamy and T. P. Prasad, J. Thermal Anal. 16 (1979) 471.
- 4 N. Sh. Saffullin and E. B. Gitis, JPC, 41 (1968) 1686.
- 5 N. Sh. Saffullin, JPC, 32 (1959) 2178.
- 6 L. Reich, Polymer Letters, 2 (1964) 109.

Zusammenfassung – FeSO₄ ist ein Abfallprodukt aus der Herstellung von TiO₂ und aus dem Stahlätzen in der Blockmetallurgie. Mittels Derivatographie, Röntgendiffraktion, Mössbauerspektroskopie, EMF und anderen Methoden wurde die thermochemische Zersetzung verschiedener FeSO₄ - FeS₂ - BaO₂ - Gemische untersucht, um chemische Umformungen, neue Festphasen und kinetische Grenzen im Temperaturbereich 292-1292 K zu verstehen. Es wird die Existenz eines mehrstufigen Prozesses gezeigt, in dem BaSO₄, FeS, BaFeO₃ und BaFe₂O₄ als Zwischenprodukte geformt werden können. In Abhängigkeit von dem Ausgangsverhältnis der Komponenten, der Zusammensetzung der Atmosphäre und des Temperaturbereiches können für das feste Endprodukt verschiedene Phasenzusammensetzungen erhalten werden. Im gegenwärtigen Stadium der Untersuchungen konnte die Möglichkeit von reinem Bariumferrit als Produkt nicht bestätigt werden.